To help stakeholders in government and business make smart decisions about the best types of land and local climates for planting bioenergy crops, researchers at the U.S. Department of Energy's (DOE's) Argonne National Laboratory are using computational modeling to predict which counties could see increases in soil organic carbon from cultivation of crops like switchgrass for biofuels. Increasing carbon stored in soil is one way to help mediate the amount of carbon dioxide released into the atmosphere.
In an effort to decrease greenhouse gas emissions from transportation by reducing the use of petroleum fuels, the U.S. Environmental Protection Agency's Renewable Fuel Standard calls for increased production of advanced biofuels. Fortunately, most bioenergy crops can grow on a range of crop and marginal lands across the country, taking advantage of land that may not be viable for traditional crops. Because Earth's soil stores about three times as much carbon as the atmosphere, these deep-rooted plants that return season after season might also help reduce greenhouse gas emissions before they are even harvested for fuel by increasing the amount of carbon stored in the soil.
In the Argonne study published in Global Change Biology-Bioenergy, researchers combined county-level crop yield and weather data and soil data at depths relevant to bioenergy crops.
Modeling Predicts Which Counties Could Store More Carbon in Soil by Growing Bioenergy Crops
No comments:
Post a Comment