The biggest problem hydrogen fuel cell vehicles face is that they deliver no obvious major consumer (or societal/environmental) benefit compared to the competition, but have a bunch of obvious consumer defects. These defects include high first cost, high fueling cost (compared to both gasoline and electricity), lack of fueling stations and lack of a nationwide fuel-delivery infrastructure — especially for renewable hydrogen.
It would take several miracles to overcome all of those problems simultaneously in the coming decades. Last year, for instance, a major independent study concluded: “Hobbled by High Cost, Hydrogen Fuel Cells Will Be a Modest $3 Billion Market in 2030.” And beyond solving the myriad problems needed to make hydrogen cars practical and affordable, one of the miracles needed for their marketplace triumph would be that all of the competing vehicles, such as electric vehicles or advanced hybrids, fail to make any major advances at all during the same time.
Over the past two decades, while concern over new car tailpipe emissions dropped somewhat, concern over CO2 emissions has grown — and not just in the U.S. but globally, where most new cars are sold. And that meant renewed interest in a true ZEV, one that didn’t just have zero tailpipe emissions, but one that ran on a fuel that itself was virtually emission-free and carbon-free.
At the same time, manufacturers and entrepreneurs kept working on improving ZEV technology. The Bush Administration launched its (in)famous hydrogen car initiative, dramatically boosting spending on hydrogen fuel cell vehicles (funded in part by slashing efforts to work with big energy-using companies to develop and deploy near-term energy-efficient technologies). And massive amounts of money were poured into improving batteries and related components, not just by governments, car makers and clean energy venture capitalists, but also by portable device and phone manufacturers who wanted to improve performance while cutting costs.
The results in the case of batteries have been impressive.
And so we have seen the introduction of many vehicles by many carmakers that are either pure EVs (like the Tesla) or plug-in hybrid electric vehicles (PHEVs), like the Chevy Volt, advanced hybrids that can run a short commuter-scale distance on pure electricity before either reverting to the onboard gasoline engine or requiring a stop to recharge.
In any case, we have this huge global warming problem going on right now. We aren’t going to go to all the trouble of creating a premium solution, zero-carbon electricity, only to throw away most of it as part of some elaborate hydrogen FCV scheme — a scheme that also requires the creation of an elaborate and expensive new system of green hydrogen production and/or delivery infrastructure. That’s particularly true when we can just run EVs on the premium carbon-free power directly (or, for that matter, simply continue to slash vehicle CO2 emissions through the straightforward continuation of fuel economy improvements).
Once again, FCVs simply aren’t greener than EVs in any practical sense either now or in the foreseeable future.
Tesla Trumps Toyota Part II: the Big Problem with Hydrogen Fuel Cell Vehicles
No comments:
Post a Comment