Forged ahead
Though several countries have stated vague objectives about a likely high number of fast reactors by mid-century, Russia is really the only country that has forged ahead with them. Its BN-600 at Beloyarsk has operated well, supplying electricity to the grid since 1980, and is said to have the best operating and production record of all Russia’s nuclear power units.
Its successor is the BN-800, also at Beloyarsk. This is a new more powerful FNR, which is actually the same overall size and configuration as BN-600. There are some significant improvements from BN-600 however. The first BN-800 (and probably only Russian one) is Beloyarsk-4, which started up in mid 2014 and recently went into commercial operation. Whereas several BN-800s were once envisaged, this BN-800 at Beloyarsk has become essentially a test rig for fuel, and its main purpose has become providing operating experience and technological solutions, especially regarding fuel, that will be applied to the BN-1200.
The BN-1200 fast reactor is being developed as a next step towards Generation IV types (see below), and the design was expected to be complete this year. Rosatom’s Science and Technology Council has approved the BN-1200 reactor for construction at Beloyarsk, with plant operation from about 2025. A second one is to be built at South Urals by 2030. Others are envisaged following. It is significantly different from preceding BN models, and Rosatom plans to submit the BN-1200 to the Generation IV International Forum (GIF) as a Generation IV design.
Generation IVSmall reactor
The Generation IV International Forum (GIF), inaugurated in 2001, is a major international programme, which, on the basis of collaboration among 13 countries and the EU, is developing six nuclear reactor technologies for future deployment. Four of these are fast reactors. All operate at higher temperatures than most of today’s plants, and four are designated for hydrogen production as well as power. More information here.
This is the only firm program of large commercial fast reactors at this stage. However, Russia is also active with smaller and more innovative FNR designs. It has experimented with several lead-cooled reactor designs, and used lead-bismuth cooling for 40 years in reactors for its seven Alfa class submarines – not very successfully but accumulating 70 reactor-years of experience.
A significant new Russian design getting away from sodium cooling is the BREST fast neutron reactor, of 300 MWe or more with lead as the primary coolant, at 540°C, and supercritical steam generators. A pilot unit is planned at Seversk, and 1200 MWe units are proposed. Interestingly, it is a lead-cooled fast reactor design that Westinghouse has flagged a real interest in.
Getting into the small modular reactor scene is Russia’s lead-bismuth fast reactor (SVBR) of about 100 MWe. This is an integral design, which can use a wide variety of fuels. The unit would be factory-made and shipped as a 4.5m diameter, 7.5m high module, then installed in a tank of water which gives passive heat removal and shielding. A power station with 16 such modules is expected to supply electricity at low cost as well as achieving inherent safety and high proliferation resistance. A new cooperation agreement with China may advance plans for this, since in contrast with other nuclear R&D there, China’s own FNR program seems stalled.
Astrid
In addition to the Russian programme, there are many other fast reactor designs around the world being investigated by governments and private enterprise, and time will tell which will succeed. Most are relatively small.
One worth mentioning is Astrid, a French project with Japanese input. Astrid is envisaged as a 600 MWe prototype of a commercial series of 1500 MWe sodium-cooled fast reactors which are likely to be deployed from about 2050 to utilise the half million tonnes of depleted uranium that France will have by then. Astrid will have high fuel burn-up, including minor actinides in the fuel elements, and its mixed oxide (MOX) fuel will be broadly similar to that in Europe’s current reactors.
Another is GE-Hitachi’s PRISM, based on a smaller US fast reactor which ran for 30 years to 1994. It is 311 MWe, a convenient size for replacing fossil fuel units, and its metallic fuel is derived from used fuel from conventional reactors. In October 2016 GEH signed an agreement with a subsidiary of Southern Nuclear Operating Company, to collaborate on licensing fast reactors including PRISM in the USA.
Read more at Fast Reactors Are Alive and Kicking
No comments:
Post a Comment